To Be Finished

for (i in 1:length(luckfactor)) {
  for (j in 1:length(selected)) {
    for (k in 1:R) {
      simulationresults <- tibble(Skill = runif(n = N, min = minscore, max = maxscore), Luck = runif(n = N, min = minscore, max = maxscore)) %>%
        mutate(Score = Skill * (1 - luckfactor[i]) + Luck * luckfactor[i])
      
      luckyFew <- simulationresults %>%
        mutate(SkillRank = N - rank(Skill) + 1,
               ScoreRank = N - rank(Score) + 1,
               SkillSelected = SkillRank <= selected[j] * N) %>%
        arrange(ScoreRank) %>%
        head(selected[j] * N)
      
      
      results[[i]][[j]][k,] <- c(mean(luckyFew$Skill), mean(luckyFew$Luck), sum(luckyFew$SkillSelected), luckfactor[i], selected[j])
    }
    results[[i]][[j]] <- as.data.frame(results[[i]][[j]])
  }
  results[[i]] <- bind_rows(results[[i]])
}
results <- bind_rows(results)

colnames(results) <- c("Skill", "Luck", "SkillSelected", "LuckFactor", "ProportionSelected")

results$LuckFactor <- as.factor(results$LuckFactor)
results$ProportionSelectedfct <- as.factor(results$ProportionSelected)

results %>%
  group_by(LuckFactor, ProportionSelectedfct) %>%
  summarize(meanSkill = mean(Skill),
            meanLuck = mean(Luck),
            meanSelected = mean(SkillSelected),
            medianSkill = median(Skill),
            medianLuck = median(Luck),
            medianSelected = median(SkillSelected),
            propSelected = mean(SkillSelected/ProportionSelected)/N)
## `summarise()` has grouped output by 'LuckFactor'. You can override using the `.groups` argument.
## # A tibble: 16 x 9
## # Groups:   LuckFactor [4]
##    LuckFactor ProportionSelectedfct meanSkill meanLuck meanSelected medianSkill
##    <fct>      <fct>                     <dbl>    <dbl>        <dbl>       <dbl>
##  1 0.01       5e-04                      99.9     89.5          2.2        99.9
##  2 0.01       0.001                      99.8     85.9          8.2        99.8
##  3 0.01       0.01                       99.5     57.6        176.         99.5
##  4 0.01       0.1                        95.0     51.4       1975.         95.0
##  5 0.02       5e-04                      99.8     92.4          2.3        99.9
##  6 0.02       0.001                      99.8     89.5          6.1        99.8
##  7 0.02       0.01                       99.3     66.4        154.         99.3
##  8 0.02       0.1                        95.1     52.1       1950.         95.1
##  9 0.05       5e-04                      99.7     95.9          1.1        99.8
## 10 0.05       0.001                      99.6     93.3          3.5        99.6
## 11 0.05       0.01                       98.9     79.7        104.         98.9
## 12 0.05       0.1                        94.9     54.7       1872.         94.9
## 13 0.1        5e-04                      99.7     96.7          1          99.7
## 14 0.1        0.001                      99.5     95.7          2.4        99.5
## 15 0.1        0.01                       98.4     86.3         78.9        98.5
## 16 0.1        0.1                        94.5     59.5       1728.         94.5
## # … with 3 more variables: medianLuck <dbl>, medianSelected <dbl>,
## #   propSelected <dbl>